CONDENSAÇÃO ESTÁTICA

Considere-se o pórtico plano representado na Fig. 1, sujeito a acções concentradas e distribuídas

![Fig. 1 - Pórtico plano.](image1)

Considere-se agora o mesmo pórtico dividido em duas subestruturas

![Fig. 2 - Pórtico plano - divisão em subestruturas.](image2)
Considerando apenas a subestrutura I, tem-se a seguinte numeração de nós e barras

Fig. 3 - Pórtico plano - subestrutura I.

A matriz de rigidez, deslocamentos nodais e forças nodais equivalentes às acções exteriores encontram-se relacionados da seguinte forma

\[K \cdot \ddot{a} \approx F \] \hspace{1cm} (1)

Nesta expressão figuram os seguintes vectores e matrizes

\(K \)	(9 x 9)	Matriz de rigidez global da subestrutura I. Resulta da assemblagem das matrizes de rigidez (6 x 6) das duas barras.
\(a \)	(9 x 1)	Deslocamentos dos nós da subestrutura I.
\(F \)	(9 x 1)	Vector das forças nodais equivalentes às acções concentradas e distribuídas. Resulta da assemblagem dos vectores solicitação (6 x 1) das duas barras.
A equação (1) corresponde à seguinte equação matricial

\[
\begin{bmatrix}
 k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16} & k_{17} & k_{18} & k_{19} \\
 k_{21} & k_{22} & k_{23} & k_{24} & k_{25} & k_{26} & k_{27} & k_{28} & k_{29} \\
 k_{31} & k_{32} & k_{33} & k_{34} & k_{35} & k_{36} & k_{37} & k_{38} & k_{39} \\
 k_{41} & k_{42} & k_{43} & k_{44} & k_{45} & k_{46} & k_{47} & k_{48} & k_{49} \\
 k_{51} & k_{52} & k_{53} & k_{54} & k_{55} & k_{56} & k_{57} & k_{58} & k_{59} \\
 k_{61} & k_{62} & k_{63} & k_{64} & k_{65} & k_{66} & k_{67} & k_{68} & k_{69} \\
 k_{71} & k_{72} & k_{73} & k_{74} & k_{75} & k_{76} & k_{77} & k_{78} & k_{79} \\
 k_{81} & k_{82} & k_{83} & k_{84} & k_{85} & k_{86} & k_{87} & k_{88} & k_{89} \\
 k_{91} & k_{92} & k_{93} & k_{94} & k_{95} & k_{96} & k_{97} & k_{98} & k_{99}
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4 \\
 a_5 \\
 a_6 \\
 a_7 \\
 a_8 \\
 a_9
\end{bmatrix} =
\begin{bmatrix}
 F_1 \\
 F_2 \\
 F_3 \\
 F_4 \\
 F_5 \\
 F_6 \\
 F_7 \\
 F_8 \\
 F_9
\end{bmatrix}
\]

\[k_{12} = k_{12} - \left(k_{19} / k_{99} \right) k_{29} \]

(4)

\[k_{21} = k_{12} - \left(k_{29} / k_{99} \right) k_{19} \]

(5)

Assim se verifica que

\[k_{21}' = k_{12}' \]

(6)

De um modo mais genérico tem-se a seguinte expressão para \(k_{ij}' \)

\[k_{ij}' = k_{ij} - \left(k_{ip} / k_{pp} \right) k_{ip} \quad \left(i=1,\ldots,8; \; j=1,\ldots,9; \; p=9 \right) \]

(7)

Nota: quando \(j = p \), \(k_{ij}' = 0 \)
Considerando o termo genérico do triângulo superior \(k_{rs}' \) \((r < s)\), tem-se

\[
k_{rs}' = k_{rs} - k_{pp} \frac{k_{rs}'}{k_{pp}} k_{rs}
\]

O correspondente termo do triângulo inferior é

\[
k_{sr}' = k_{sr} - k_{pp} \frac{k_{sr}'}{k_{pp}} k_{sp}
\]

Uma vez que \(k_{rs} = k_{sr} \), conclui-se que

\[
k_{rs}' = k_{sr}'
\]

ou seja, na expressão (3), a submatriz \(8 \times 8 \) que é constituída pelas linhas e colunas de 1 a 8 é simétrica.

As componentes 1 a 8 do vector solicitação apresentam a seguinte expressão genérica

\[
F_i' = F_i - \left(\frac{k_{pp}}{k_{pp}} \right) F_p
\]

Procedendo de igual modo com a coluna 8 e depois com a coluna 7, chega-se a

\[
\begin{bmatrix}
k_{11}' & k_{12}' & k_{13}' & k_{14}' & k_{15}' & k_{16}' & 0 & 0 & 0 \\
k_{12}' & k_{22}' & k_{23}' & k_{24}' & k_{25}' & k_{26}' & 0 & 0 & 0 \\
k_{13}' & k_{23}' & k_{33}' & k_{34}' & k_{35}' & k_{36}' & 0 & 0 & 0 \\
k_{14}' & k_{24}' & k_{34}' & k_{44}' & k_{45}' & k_{46}' & 0 & 0 & 0 \\
k_{15}' & k_{25}' & k_{35}' & k_{45}' & k_{55}' & k_{56}' & 0 & 0 & 0 \\
k_{16}' & k_{26}' & k_{36}' & k_{46}' & k_{56}' & k_{66}' & 0 & 0 & 0 \\
k_{17}' & k_{27}' & k_{37}' & k_{47}' & k_{57}' & k_{67}' & 0 & 0 & 0 \\
k_{18}' & k_{28}' & k_{38}' & k_{48}' & k_{58}' & k_{68}' & k_{78}' & k_{88}' & 0 \\
k_{19}' & k_{29}' & k_{39}' & k_{49}' & k_{59}' & k_{69}' & k_{79}' & k_{89}' & k_{99}'
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6 \\
a_7 \\
a_8 \\
a_9
\end{bmatrix} =
\begin{bmatrix}
F_1'' \\
F_2'' \\
F_3'' \\
F_4'' \\
F_5'' \\
F_6'' \\
F_7'' \\
F_8'' \\
F_9''
\end{bmatrix}
\]

(12)

Na subestrutura representada na Fig. 3, os graus de liberdade 1 a 6 são comuns a outras subestruturas ou estão ligados ao exterior, enquanto que os graus de liberdade 7 a 9 são interiores à subestrutura I. Por este motivo os graus de liberdade 1 a 6 permanecem na análise enquanto que os graus de liberdade 7 a 9 são removidos. Assim, aos primeiros está associado o índice \(P \) (permanecem) e aos últimos o índice \(R \) (removidos). A equação (12) pode ser escrita considerando as seguintes submatrizes

\[
\begin{bmatrix}
K_{pp} & K_{pr} \\
K_{rp} & K_{rr}
\end{bmatrix}
\begin{bmatrix}
a_p \\
a_R
\end{bmatrix} =
\begin{bmatrix}
F_p \\
F_R
\end{bmatrix}
\]

(13)
ou

\[K_{pp} a_p + K_{pr} a_R = F_p \] \hspace{1cm} (14)

\[K_{rp} a_p + K_{rr} a_R = F_R \] \hspace{1cm} (15)

Uma vez que \(K_{pr} \) é uma matriz nula, tem-se

\[K_{pp} a_p = F_p \] \hspace{1cm} (16)

A matriz \(K_{pp} \) (6 x 6) é a matriz de rigidez de um elemento finito com as características da subestrutura I, quando apenas são considerados os graus de liberdade 1 a 6 (ver Fig. 4).

O elemento finito representado na Fig. 4 tem uma matriz de rigidez que passa a designar-se \(K_I \), um conjunto de deslocamentos \(a_I \) e um vetor solicitação \(F_I \), sendo

\[K_I = K_{pp} \] \hspace{1cm} (17)

\[a_I = a_p \] \hspace{1cm} (18)

\[F_I = F_p \] \hspace{1cm} (19)

A relação (16) passa a escrever-se

\[K_I a_I = F_I \] \hspace{1cm} (20)
Procedendo de um modo semelhante com a subestrutura II, obtém-se o elemento finito representado na Fig. 5, que apenas possui 9 graus de liberdade. Os graus de liberdade correspondentes ao nó 4 da Fig. 2 foram removidos.

Fig. 5 - Elemento finito correspondente à subestrutura II.

Para a subestrutura II tem-se a seguinte relação que envolve 9 graus de liberdade

\[K_{II} a_{II} = F_{II} \]

Assemblando as matrizes de rigidez e os vectores solicitação das duas subestruturas numa matriz de rigidez e vector solicitação globais, tem-se a seguinte relação que envolve 12 graus de liberdade

\[K_{G} a_{G} = F_{G} \]

Esta relação corresponde à estrutura representada na Fig. 6

Fig. 6 - Assemblagem das duas subestruturas.
O sistema de equações lineares (22) deve ser resolvido atendendo às condições de apoio nos nós 1, 2 e 3. Depois de calculados os deslocamentos \(a_G \), ficam determinados os deslocamentos \(a_I \) e \(a_R \).

No caso da subestrutura I, ficam assim calculados os deslocamentos \(a_p \). Recorrendo à equação (15), pode-se em seguida calcular os deslocamentos \(a_R \), resolvendo o seguinte sistema de equações lineares

\[
K_{RR} a_R = F_R - K_{RP} a_p
\]

Uma vez que \(K_{RR} \) é uma matriz triangular inferior, pode-se resolver (23) apenas com uma substituição progressiva, i.e., sem ser necessário realizar os cálculos correspondentes à fase de eliminação de Gauss.

Depois de calculados todos os deslocamentos em todas as subestruturas podem-se calcular os esforços nas barras do pórtico.

CONCLUSÃO

Em estruturas com um elevado número de graus de liberdade a condensação estática pode conduzir a uma grande economia de memória destinada ao armazenamento de matrizes, bem como a uma mais rápida resolução do problema. O sucesso deste procedimento depende do modo como se seleccionam as subestruturas. É também necessária uma renumeração criteriosa dos graus de liberdade de cada subestrutura, bem como da estrutura que resulta da assemblagem das subestruturas. A economia de memória resultante da condensação estática torna-se assim ainda mais evidente, devido ao facto de se minimizar a semibanda de cada uma das matrizes envolvidas. O tempo de resolução torna-se também menor porque se evitam cálculos desnecessários com elementos nulos.